Math 246A Lecture 13 Notes

Daniel Raban

October 24, 2018

1 Integration of Harmonic Functions and Winding Numbers

1.1 Integrating harmonic functions

Recall the definition of a harmonic function.

Definition 1.1. A function $u: \mathbb{R}^2 \to \mathbb{R}$ is **harmonic** if $u_{xx} + u_{yy} = 0$.

Example 1.1. Let u = Re(f) and f = u = iv be holomorphic. Then, by the Cauchy Riemann equations, u is harmonic.

Assume u is harmonic in Ω . Let $*du = -u_y dx + u_x dy$. Then

$$\int_{\partial R} *du = 0$$

for all rectangles with $\partial R \subseteq \Omega$. This is iff $f \in H(\Omega)$ and u = Re(f) in Ω , which is equivalent to $\int_{\gamma} *du = 0$ for all closed curves $\gamma \subseteq \Omega$.

However, if Ω is an annulus and $u = \log |z|$, then $\int_{\partial R} *du \neq 0$. So we must take care when formulating our theorem.

Theorem 1.1. Let u(z) be harmonic on a domain Ω . Then for 0 < r < R,

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{it}) dt.$$

Corollary 1.1. Let Ω be a domain and $u: \Omega \to \mathbb{R}$ be harmonic. If $u(z_0) = \sup_{B(z_0,R)} u(z)$, then u is constant on Ω .

1.2 Winding numbers

Let $\gamma = \{z(t) : a \leq t \leq b\}$ be a continuous, closed curve in \mathbb{C} . Let $\alpha \in \mathbb{C} \setminus \gamma$. Then let $\varepsilon > 0$ be such that $\int_{\gamma} |z - \alpha| > \varepsilon > 0$. Then there exists $\delta > 0$ such that $|t < s| < \delta \implies |\gamma(t) - \gamma(s)| < \varepsilon$. Choose $a = t_0 < t_1 < \dots < t_n = b$ with $t_{j+1} - t_j < \delta$ for all

j. Let $U_j = \{z \in \mathbb{C} : |z - z(t_j)| < \varepsilon\}$. Then $U_0 = U_n$, $U_j \supseteq \{z(t) : t_{j-1} \le t \le t_{j+1}\}$, and $\alpha \notin \bigcup_j U_j$.

On U_j , there exists a holomorphic function F_j where $F'_j(z) = \frac{1}{z-\alpha}$.

$$F_j(z) = \log|z - \alpha| + i\arg(z - \alpha) + 2\pi i k_j,$$

where $k_j \in \mathbb{Z}$.

Definition 1.2. The winding number (or index of γ around α) is

$$n(\gamma, \alpha) = \frac{1}{2\pi i} \sum_{j=0}^{n-1} F_j(z(t_{j+1})) - F_j(z(t_j)).$$

Theorem 1.2. The winding number has the following properties:

- 1. $n(\gamma, \alpha) \in \mathbb{Z}$.
- 2. $n(\gamma, \alpha)$ is independent of choices of t_i and of F_i
- 3. If γ is piecewise C^1 , then $n(\gamma, \alpha) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z-\alpha} dz$
- 4. The function $\alpha \mapsto n(\gamma, \alpha)$ is constant on components of $\mathbb{C} \setminus \gamma$
- 5. $n(\gamma, \alpha) = 0$ on the unbounded component of $\mathbb{C} \setminus \gamma$.

Proof. To prove the first statement,

$$e^{2\pi i n(\gamma,\alpha)} = \prod_{j=1}^{n} e^{F_j(z(t_{j+1})) - F_j(z(t_j))} = \prod_{j=1}^{n} \frac{z(t_{j+1}) - \alpha}{z(t_j) - \alpha} = 1.$$

To prove the second statement, we just need to show that the winding number is unchanged if we take a refinement of the partition. This corresponds to the same F_i .

The equality of winding numbers under refinements of partitions makes the Riemann sum in part 3 the same for sufficiently fine partitions.

The winding number is continuous as a function of α , but it is integer valued. So it is constant on connected components.

In the integral form in part 3, let $\alpha \to \infty$. Then the integrand goes to zero uniformly, so the winding number is zero on this component.